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Abstract Hobbs’ model [Hobbs. 11. W. (1967) The formation of tension joints tn sedimentary rocks: on ex- 
planation. Gcw/o,~ictr/ M~,~r/:irrc, 104, 5X-556.] has been cited as one of the theories for interpretation of the 
linear relationship between saturated joint spacing (,\) and bed thickness (/) in intcrbeddcd sedimentary rocks. 
However. this model i’; based on an assumption that the shear stress in the boundinp non-jointmg Iaycrs 
decreases linearly from the maximum value at the layer matrix inlerface to zero at a distance exactly equal to 
the jointing laqer thickness from the interface. We provide a revised analytical model which takes into account 
the non-linear decay of the shear stress and the ctttcts of bounding bed thickness (cl). The model shows that 
t ~ ,yfi fol- the competent beds bounded by t\vo incompetent layax nearly identical in thickness. The con- 
stant r/ depends on both material properties of rocks (i.e. the Youn@‘s modulus. tensile strength and fracture 
wturation strain of the competent bed. and the shear modulus of the incompetent layers) and decal modes of 
the shear stress in the bounding layers. If the ratio of tl to I is conslant. the rclation\hip between .Y and I is lin- 
car. If C/ is constant. the joint spacing increases as a function of the square root of /. Complex I rl variation\ 
from Cambrian fysch sediments at Plage Victor in the Saint-Jean Port-Joli arca of the Quebec Appalachians, 
ho4evcr. result in a statistically linear relationship betuecn \ and 1. c 1998 Elwvicr Science Ltd. All rights 

INTRODUCTION 

Hobbs (1967) introduced for the first time to geologists 
the shear-lag model of Cox (1952) and modified the 
mathematical derivations of the model to incorporate 
an elastic layer~~matrix system. As described by Gross 
ct (I/. (1995). Hobbs’ paper has been commonly cited 
as a theoretical explanation for the linear relationship 
between joint spacing and bed thickness in sedimentary 
rocks (Price. 1966; McQuillan, 1973: Ladeira and 
Price. 198 I: Huang and Angelier. 1989; Narr and 
Suppe, 1991: Gross. 1993: Gross rlt (II., 1995; Wu and 
Pollard. 1995). However, Hobbs’ model is based on an 
assumption that the shear stress in the matrix (bound- 
ing non-jointing beds). which is caused by the strain 
incompatibility between the competent layer and the 
incompetent matrix, decreases /i/lc~r,!l~ from the maxi- 
mum value at the layer~matrix interface to zero ot N 
rtistmcc~ ~.x-uctlj. quit to the joitlting lojw t1iickuc~s.s 

from the interface [his equation (9)]. This assumption 
obliges a condition that must be met formally for 
Hobbs’ model to apply: the incompetent layer thick- 
ness should be always larger than the jointing compe- 
tent layer thickness (Narr and Suppe. 1991). In many 
sedimentary rocks, however, the bounding non-jointing 
beds are thin relative to jointed layer thickness (Narr 
and Suppe. 1991; Gross rt N/., 1995). Moreover, finite- 
element analyses of Fischer et d. (1995) demonstrate 
that the shear stress formed by the strain incompatibil- 
ity decays non-linearly in the matrix with the vertical 
distance from the layer---matrix interfaces. Theoretical 
analyses of the composites with an identical arrange- 
ment of constituents (Zhao and Ji, 1997) suggest that 

the shear stress should decrease from the maximum 
value at the layer-matrix interface to zero at half way 
between two neighboring competent layers. The reason 
is simple: the layer--matrix composite is considered as 
an edifice constructed from the identical ‘unit-cell’ 
building blocks. The boundary between two neighbor- 
ing unit-cells should be a plane over which no shear 
stress acts because the composite is assumed to be 
applied to a uniform extension. 

As noted by Gross ct al. (1995), it is often difficult 
to understand the above problems in Hobbs’ paper 
because it is compact and lacks illustrations. It is the 
purpose of this paper to provide a straightforward yet 
rigorous modification of the original Hobbs’ shear-lag 
analysis so as to account for the non-linear decay ol 
shear stress in the matrix. Starting from first principles 
and using equilibrium and continuity conditions, a 
revised model is provided for the relationship between 
joint spacing and bed thickness. 

THE REVISED MODEL 

Hobbs (1967) treated bedded strata as a lamellar 
composite containing continuous, aligned competent 
(higher elastic modulus) and incompetent (lower elastic 
modulus) layers of equal length (Fig. la). He assumed 
that each component behaves in a purely linear-elastic 
manner, that is. no plastic yielding is allowed. Further, 
in his treatment. residual stress effects are also neg- 
lected. If a uniform extensional strain (i:) is applied in 
the direction parallel to the layers (Fig. lb), the result- 
ing tensile stress will be higher in the competent layer 
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Fig. I. Schematic illustraGons of a lamellar composite conklining 
continuous. aligned competent (f) and incompetent (m) layers ot 
equal length. (a) The unstrained state. (b) The compoyitc is subjected 
to a uniform, layer-parallel extensional strain (x). In this c:~se, the 
competent layer carried a greater stress than the mcompetent layer. 

than in the incompetent layers (matrix). Joints will 
then form in the competent layer at its weak points 
where the tensile stress has reached its critical tensile 
strength (C,,). The joints terminate at contacts with 
adjacent incompetent layers because the competent 
layer fails at much lower magnitudes of extensional 
strain than the incompetent layers (Garrett and Bailey. 
1977). 

Because joints are free surfaces across which no 
stress can be transferred (Lachenbruch. 1961: Pollard 
and Segall. 1987), the far-field extensional strain can- 
not be directly applied to a discontinuous. jointed 
layer segment (ACDB in Fig. 2a) from its ends (AR 
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Fig. 2. Schematic illustration of a unit-cell (a) used in the mechanical 
equilibriulll analysis of the shear-lag model for the layer matrix sys- 
tem. Variables are defined in text. The coordinate origin is located at 
the center of the layer segment. The Z-axis is perpendicular to the .Y- 
and Y-axes. Under a uniform stress. the two ends of the umt-cell will 
be bent (b). As a result, a ‘lens’-shaped void will be formed between 
two adjacent unit-cells (c). (d) shows the variation of the longitudinal 
displacements introduced on applying a uniform extensional strain at 

the ends of the matrix. The openings at joints are exaggerated. 

and CD planes in Fig. 2~1). Thus, the tensile stress 
build-up in this layer segment is purely due to the 
stress transfer from the matrix to the competent layer 
by means of interfacial shear stresses. Because the 
interfaces between the layers (AC and BD in Fig. 2~1) 
are assumed to be welded. the different amounts of 
layer-parallel displacements between the matrix and 
competent layer result in shear strains, and thus shear 
stresses, parallel to the layers. It is of considerable 
interest to know how tensile stress is built up in an in- 
dividual layer segment because the final joint spacing 
is controlled by the magnitude and distribution of the 
stress. The stress transfer can be analyzed according to 
shear-lag model (Cox, 1952; Holister and Thomas. 
1966; Kelly and MacMillan, 1986; Zhao and Ji, 1997). 
The following analysis does not address the problems 
of joint propagation and thus we are justified in ignor- 
ing the three-dimensional aspects of the phenomenon. 

In order to perform the shear-lag analysis, a unit 
cell is used. In the unit cell shown in Fig. 2(a), a 
jointed competent layer segment (ACDB) lies between 
two half incompetent beds (EGCA and BDHF). with 
joints (AB and CD) forming the ends of the competent 
layer segment. As suggested by Price (1966). a sedi- 
mentary bed always contains some randomly posi- 
tioned pre-existing joints which can result from a 
Poisson process. The boundary conditions at the ends 
of the unit cell are critical for the analysis. First, the 
jointing layer is extended parallel to the X-direction 
and the tensile stress in this direction should be zero 
across each joint surface (AB and CD planes). Second. 
the interfaces between the layers are assumed to be 
welded and thus there is no interfacial slip. Third. the 
external loading on the ends of the matrix (EA. BF. 
GC and DH planes in Fig. 2a) cannot be uniform. If 
the loading is uniform, the edges of the matrix will be 
bent (Fig. 2b) during the deformation. and conse- 
quently, a ‘lens’-shaped void will be formed between 
two adjacent unit-cells (Fig. 2~). Such ;I scenario 
implies that the joint is extended from the competent 
layer into the neighboring incompetent beds a distance 
equal to half thickness of the incompetent beds. In 
nature, however. the joints are restricted to the compe- 
tent layers (Huang and Angelier, 1989: Narr and 
Suppe. 1991; Gross ct trl.. 1995). In order to avoid the 
above problem, we assume that the ends of the matrix 
experience a uniform extensional strain 0:) and the 
existing joints at the ends of the competent layer seg- 
ment are open during the deformation (Fig. 2d). This 
assumption implies that two adjacent competent layer 
segments are separated to some distance during the 
extension. However, the exact size of the gaps is not 
critical in this model. The model shown in Fig. 2(d) is 
believed to represent sufficiently well for our purpose 
the state of affairs around a jointed layer segment. 

In the following analyses, we use the shear-lag 
model developed by Cox (1952) and summarized by 
Holister and Thomas (1966), Kelly and MacMillan 
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(1986), and Zhao and Ji (1997). This model is elegant 
in its simplicity and provides accurate estimates of the 

longitudinal tensile stress in the continuous or discon- 
tinuous fibers embedded in the weak matrix. Hence the 
model has been widely used by geologists to explain 
the origin of extension fracture boudinage (Lloyd et 

ul., 1982; Masuda and Kuriyama, 1988; Ji and Zhao, 
1993; Ji et al., 1997; Ji, 1997). The model is also able 
to provide the distribution of shear stresses in the 
weak matrix surrounding the strong inclusions and 
accordingly interpret the variations of dislocation den- 
sity and of recrystallized grain size in composites and 
polyphase rocks (Dunand and Mortensen, 1991; Zhao 
and Ji, 1997). Furthermore, the model predicts the 
elastic or flow strength of two-phase composites (e.g. 
Nardone and Prewo, 1986; Zhao and Ji, 1993) and 
rocks (Ji and Zhao, 1994). 

Under the above conditions, as shown in detail in 

the shear-lag model (Hobbs, 1967; Kelly and 
MacMillan, 1986; Lloyd et al., 1982), the governing 
equation for the tensile stress in the competent layer 
segment, o,(s), is given by 

gf(.y) = Efc + 2 sinh@) + :,cosh(@) (1) 
I 

where I: is the far-field strain, E,- and Af- are the 
Young’s modulus and the area of cross-section of the 
competent layer, respectively. A,-= ht, where t and h 
are the thickness and width of the competent layer in 
the Y- and Z-directions (Fig. 2a), respectively. 

p= & ( > 
112 

(2) 

where H is a constant, depending on the geometrical 
arrangement of the layer and the matrix and on their 
respective elastic moduli. 

In equation (l), S1 and S2 are constants which can 
be determined according to the following boundary 
conditions: 

“f(-;) +) =o 

where L is the length of the layer segment (Fig. 2a). 
Equation (3) is due to the fact that the tensile stress is 
reduced to zero at the existing joints since they are free 
surfaces (Lachenbruch, 1961; Pollard and Segall, 
1987). 

Substituting equation (1) into equation (3), we 
obtain 

s, =o (4) 

and 

s2 = _ Et-& 
cash @ 

0 2 

(5) 

The distribution of tensile stress in the competent layer 

segment is then: 

(6) 

where equation (6) shows that the tensile stress in a 
competent layer segment builds up from the ends 
(X = -L/2 and s = L/2) and is a maximum at the 
center (Fig. 3). 

The value of H can be obtained from the following 
analysis. If P(X) is the load in the competent layer seg- 
ment at a distance .Y from the origin of coordinates 
(Fig. 2a), Cox (1952)‘assumed 

(7) 

where u(_v) is the longitudinal displacement in the com- 
petent layer and v(.Y) is the corresponding displacement 
the matrix would undergo if the competent layer were 
absent (Hobbs, 1967; Kelly and MacMillan, 1986; 
Lloyd et al., 1982). 

If 5(x, y) is the shear stress, in the .X direction, on 
planes parallel to the XZ plane (Fig. 2a), then at the 
interface between the layer and the matrix, the shear 
stress is z(x. r/2). According to 
brium, 

d/‘(s) = -2z(s, t/2). (hds) 

or 

mechanical equili- 

(8) 

d P(x) 
__ = -2/X(x, t/2) = H[tl(.X) - V(X)] 

dx 
(9) 

Therefore, 

H = _ 2ws, t/2) 
2.4(X) - v(x) 

(10) 
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Fig. 3. Predicted tensile stress variations. as functions of the incom- 
petent layer thickness (d = 0.11. tl = I, and d = 5t). along a compe- 
tent layer (t = 0.2 m and L = 20 m). Using Et= 5X GPa, IT,;&, = 3. 

c = 0. I %, v,,, = 0.25. and II = 3 as input data. 
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From the mechanical equilibrium point of view (Zhao 
and Ji, 1997), the shear stress formed by the strain 
incompatibility between the layer and the matrix 
should progressively decrease in the Y direction from 
the maximum value [T(.Y, t/2)] ;I( the layer/matrix inter- 
face to zero at the middle way between two neighbor- 
ing competent layers (EC and FH planes in Fig. ?:I), 

that is, 

f + rl 
r.(.\-. J’) = 0. when ,t’ = -__ 3 (11) 

and 

T(.Y.J') = T(.Y. t/2). when j‘ = i. (12) 

The reason for this is that the boundaries of the unit 
cell (EC and FH planes in Fig. 21) should have zero 
shear stress. Lloyd et rrl. (1982) assutned that shear 
stress is constant in the X direction on any XZ plane 
parallel to the layer [their equation (IO)]. However. 
their assumption cannot satisfy the above mechanical 
equilibrium conditions (Zhao and Ji. 1997). 

Hobbs (1967) proposed that the shear stress 
decreases in the Y direction in the matrix according to 
the following equation: 

T(.\-. .I’) = T(.\-. .I’)(,,,,/~ (I 31) 

He located the coordinate origin at the layer,‘matrix 
interface [his equation (9)]. If we locate the coordinate 
origin at the layer center (Fig. 21). equation (13~1) 
becomes 

T(.\-. j’) = T(.Y. .\‘)I,._,/2 (l3b) 

This assumption indicates [hat the shear stress in 
the matrix decreases linearly from the maxit~~um value 

T(.\-. .t’)l,. , l at the layer- matrix interface to zero at ;I 
distance exactly equal to the competent layer thickness 
(I) frotn the interface. Such ;I shear stress distribution 
does not apply to the wse whet-c rl < t (Fig. ?a) sincc 
the mechanical equilibrium cannot be attained. In 
nature, however. tnany non-jointing incotnpetent beds 
are much thinner than jointed beds. This situation is 
thus precluded by Hobbs’ model. The above shortcom- 
ings in the Hobbs’ model were also recognized by 
Nat-t- and Suppe ( I99 I), Gross or (I/. ( 1995) and 
Fischer PI r/l. ( 1995). 

Tyson and Davies (1965) performed a photoelastic 
study of the shear stresses in it quasi-infinite tnatrix 
(composed of arulditc CT 200) around a single cylind- 
rical fiber composed of the material dural. They found 
that the shear stresses in the matrix (T,),) fall off 
radially approximately as the inverse of the distance 
(r) from the fiber axis. Namely. T,,, = ~,(r1,'r), where T, is 
the interfacial shear stress and 1.t. is the fiber radius. In 
the composites with large fiber volume fractions. how 

ever, the above equation is inappropriate to dcscribc 
the shear stress distribution in the matrix. The reason 
is that the shear stress should be equal to zero at half 
way between two neighboring fibers (Zhao and Ji. 
1997). 

In contrast to Hobbs’ assumption shown by 
equation (I 3a or b). two-dimensional finite element nu- 
merical simulations of Fischer cut rrl. (1995) dctnon- 

strated that the bedding-parallel shear stress dccreascs 
non-linearly with increasing the vertical distance from 
the maximum value at the bedding interface to zero 
away from the interface. 

A simple expression for the non-linear variations 01 
T(.\-,J.). which C;III satisfy the boundary conditions gi\;en 
by equations ( I I) and (l2), is the following: 

where /I is ;I decay constant larger than or equal to I 
As shown in Fig. 4, the shear stress decreases more 
rapidly with the vertical distance from the interface fot 
larger II values. Although equation (14) is certainly not 
;I unique solution to the boundary conditions. we 
could find no constraints for values of T(.\-,.I‘) from 
I‘ 7 t/2 to 1’ ~ (t 1 cl):‘2 to w:trrant the use of ;I more 
complicated function for T(.Y, ,L‘). The actual decay 

tnodcl of the shear stress in the matrix atl’ects the rc- 
lationship betu:ecn the joint spacing and bed thickness. 
WC hope that our work will encourage experimental 
studies of the shear stress distribution and magnitude 
in the matrix. For simplicity. in the present study, \ve 
assume that the shear stress in the matrix can be 
described by equation (14). 

Now Ict II‘ be the displacement in the soft matrix 
due to the extension. II‘ there is no slippage between 
the competent and incompetent layers, )I‘ mz II. At ;I 

distance from the X-axis equal to (f + t/)/2. wc have 
II’ = I‘. Considering equation (14). we linve the shear 

c 1.0 

: L 

Gi 

i 0.8 - n:2 

5 * II=3 

= 0.6 ---c n=5 
.- 
: 
r 
2 c % 0.4 

5 
!! 
z 0.2 

5 
5 _ 0.0 
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strain in the matrix described by the following 
equation: 

where G,,, is the shear modulus of the incompetent 
matrix. Integrating from //2 to (t + t/)/2, thus 

1’ - II = All, = s (r+(i)/? d,,, 

I/? 
KdJ,= 

t(.\-. t/2)M 
G - (16) 

111 

where 

Equation (17) requires numerical methods for its sol- 
ution. For a given 11 value, the M-value increases with 
the thickness of incompetent layer (cl) in an approxi- 
mately linear manner (Fig. 5a). The M-value is inde- 
pendent of t. 

Substituting equation (16) into equation (IO), we 
have 

2hG,,, 
H=---- 

M . 

Then, substituting equation (18) into equation (2), we 

obtain 

where I’,,, is the Poisson ratio of the incompetent layer, 
and E,j E,,, is the elastic contrast between the compe- 

tent and the incompetent layers. For a given compe- 

tent layer, /? value decreases non-linearly with 

increasing the d value (Fig. 5b). 

From equations (I) and (9), we can obtain the shear 

stress at the layer/matrix interface (_J> = t/2): 

1 dP(s) 
5(.Y, t/2)= ---= 

Al-do,$s) t 

2h d.u 
--p=z E,$ 

sinh(pz) 

2h d.y cash 0 fi . 2 

(20) 

The derivative dP(.v)/dx at each position along the 
layer length can be derived, in fact, from the slope of 

the stress transfer profile of Fig. 3. Figure 6 shows the 
variation along a layer of the shear stress at the layer- 
matrix interface z(.L.. t/2). As expected by equation (20), 

the interfacial shear stress takes up maximum values at 

the ends of the jointed layer and sharply decays to 
zero at a distance which is termed ‘the transfer length’ 

in composite mechanics (Jahankhani and Galiotis, 

1991). As shown in Fig. 6, the transfer length increases 
with increasing the ratio of c//t. The distribution of the 
interfacial shear stress in fiber composites has been ex- 
perimentally measured employing Raman spectroscopy 
(Jahankhani and Galiotis, 199 1) and photoelastic tech- 

nique (Dow. 1961; Tyson and Davies, 1965). Their 

measured stress distribution patterns are very similar 
to our calculated results shown in Fig. 6. 

According to equation (6), the maximum tensile 

stress in the competent layer occurs midway between 
two existing joints (i.e. s = 0). and is given by 

(21) 

The maximum tensile stress decreases with decreasing 
the aspect ratio (L/t) of the fragmented layer and with 

increasing the thickness of incompetent layers (Fig. 3). 
In other words, the maximum tensile stress in the 

layers increases with increasing the volume fraction of 
the layers. 

When the magnitude of the tensile stress (nr) trans- 
ferred from the matrix reaches the tensile strength, Co, 
of the brittle layer. a new joint forms midway between 

the existing joints, and tensile stress goes to zero at 
this point. The joints are formed by a sequential pro- 
cess (Price, 1966; Hobbs, 1967; Narr and Suppe, 1991; 
Gross, 1993). After breakage, the segments are newly 
loaded in the course of extension and break again. 

Each segment has one maximum tensile stress along 
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Fig. 6. Predicted variations along a conlpelcnt 1;1ycr (/ = 2 111, 
I_ = 20 III) of the shear stress at the laqer matrix interface as a func- 
ton of the bounding bed thicknea\ (tl) according to equation (Xl). 
Using F,,‘E,,,--?. I’,,,= 0.25. ~llld i: = O.I’!<,. (a) tl = 0.11. (h) tl = 1. 

and (c) tl ~~ 5r. 

the loading direction. thus the fractured segment 
should be never broken along more than one plane at 
the same time if this segment is mechanically homo- 
geneous. In sedimentary rocks, a number of parallel 
tensile joints occur in each single competent layer. 
These joints belong to different generations which were 
formed by a successive jointing process 

Equation (21) indicates that the magnitude of the 

maximum tensile stress in a jointed layer segment 

decreases with decreasing its length&thickness ratio 

(L/r). The sequential jointing process will decrease the 

aspect ratio and in consequence will reduce the maxi- 

mum tensile stress in the subsegment. In other words, 

layer segments which have high aspect ratios break 

first. In addition, when a layer segment is jointed 

during tension, its internal stress is relaxed. and the 

force carried by this segment may be transferred to the 

surrounding matrix and particularly neighboring 

layers. 

The final joint spacing (.v) is thus controlled by a 

critical length (with respect to the layer thickness) 

below which the maximum tensile stress cannot exceed 

the tensile fracture strength of the layer (C,,). This sort 

of development is exactly analogous to the behavior in 

extension of certain types of fiber-reinforced compo- 

sites (Klipeel rt ol.. 1990; Melanitis (11 c/l., 1992) and 

rocks (Hobbs, 1967; Lloyd et ol., 19X2; Ji and Zhao. 

1993; Ji ct al., 1997). By equalizing ((T,.),,,~,~ to C’(), we 

obtain the critical length of the layer segment (L,) 

through the following equation: 

L, = ;cosh-’ (&;T,,,,). (22) 

In fact, L, is the shortest length of layer segment 

which can fracture because in shorter segments the ten- 

sile stress nowhere exceeds the tensile strength of the 

layer. Segments longer than L,, however, will fracture 

again. The minimum length of the layer segment poss- 

ible should be equal to L,:‘2 because segments shorter 

than L, cannot fracture further (Lloyd et cd.. 1982). 

When all the layer segments finally have their lengths 

between L,/2 and L,. joint spacing stops evolving and 

remains constant with increasing strain. This is a state 

of fracture saturation (Cobbold. 1979; Rives clt nl., 
1992; Wu and Pollard. 1995). 

At the state of fracture saturation, there is a range 

of layer segment lengths: L,:‘2 I L,IL,. where L, is the 

length of jointed layer segments. If the frequency dis- 

tribution of fracture spacing is a normul distribution 

in the range from L,/? to L,. we might expect the 

mean fracture spacing (equivalent to the median joint 

spacing in the present case). .s, to be: 

3 
.c = -L, 

4 
(23) 

(Ohsawa ct d.. 197X). Substituting equation (22) into 

equation (23). we obtain 

(24) 

Then substituting equation (19) into equation (24), wc 

have 
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where E,,, and v, are the Young’s modulus and the 
Poisson’s ratio of the matrix, respectively. It is worth 
mentioning that Hobbs (1967) took L, as s. 

Equation (25) shows that the median joint spacing 
depends on the thickness of competent layer, the 
mechanical properties (Ef, Em, v,, and Co) of both the 
competent and adjacent incompetent layers, and the 
degree of tectonic deformation (a). It depends also on 
the thickness of incompetent layers (d) and the decay 
constant (n) of the shear stress in the incompetent 
layers because the M value in equation (25) is con- 
trolled by these two factors. 

It should be pointed out that the applied strain (E) 
in equation (25) cannot exceed the fracture saturation 
strain of the jointed layer. As shown by experiments of 
Rives et ul. (1992) and Wu and Pollard (1992, 1995) 
when the applied strain reaches a critical value, frac- 
ture spacing stops evolving and remains nearly con- 
stant. The critical strain is called fracture saturation 
strain. In other words, joint spacing decreases with 
increasing strain before the fracture saturation strain is 
reached. In contrast, a greater applied strain beyond 
the fracture saturation strain will not significantly 

change the joint spacing (Cobbold, 1979; Narr, 1991; 
Narr and Suppe, 1991; Rives et al., 1992; Wu and 
Pollard. 1992, 1995). Inputting the fracture saturation 
strain into equation (25) one can obtain the relation- 
ship between saturated joint spacing and bed thick- 
ness. 

ANALYSIS OF FIELD DATA 

Field data were collected from the St-Roth 
Formation of Lower Cambrian age in continuous ex- 
posures at Plage Victor along the Saint-Lawrence 
River near Saint-Jean-Port-Joli (Fig. 7) which is 113 
km northeast of Quebec City. Rocks in this area 
belong to the flysch sequence belt which forms the 
western front of the Quebec Appalachians. The re- 
gional geology and stratigraphy of this area were given 
in Hubert (1967) St-Julien (1967) Hubert (1969) and 
Shalaby (1977). 

The tectonic structures of the area are characterized 
by NE-SW-trending folds and reverse faults which 
formed during the Appalachian compression. In the 
study area (900 x 300 m’), tectonic strain is fairly 
homogeneous except near the faults (Fig. 7). Joints are 
confined to the hard sandstone, siltstone and limestone 
layers while the soft shale and mudstone layers remain 
non-jointed (Fig. 8). The joints are approximately pla- 
nar fractures with little or no offset parallel to the frac- 
ture plane, and thus extension fractures (‘mode I’ 
cracks of fracture mechanics) which formed as the 

result of extensional strain normal to the plane of frac- 
ture (Pollard and Aydin, 1988). There are two sets of 
joints, one strikes about 325-340” and dips between 
65” and 85”, and the other trends about 140-155” and 
dips 10-30”. Only the first set of joints were measured 
in the field because they are nearly perpendicular to 
fold axes and likely to have been formed by a regional 
tectonic extension induced by the Appalachian com- 
pression. The joint spacing of this set in thick beds 
commonly is greater than in thin beds, as shown in 
Fig. 8. Measurements were performed on the jointed 
layers (i) having a uniform thickness; (ii) bounded by 
two incompetent layers nearly identical in thickness; 
(iii) not disturbed by faults; and (iv) having at least 40 
parallel joints whose spacing could be measured on the 
continuous outcrop. In total, 42 sandstone layers were 
measured, among them 30 from area H, 5 from area J 
and 7 from area K (Fig. 7). Small numbers of 
measurements from areas J and K make it impossible 
to investigate the effect of strain on joint spacing. 

Plume structures and rib marks on joint surfaces in 
uniform fine-grained siltstones and limestones indicate 
that the joints initiated and propagated away from 
point defects such as nodules. pebbles, pores, and min- 
erals (Price, 1966; Syme-Gash, 1971; Bahat and 
Engelder, 1984). It may be reasonable to assume that 
such defects are randomly distributed in the rocks. 

The joint-spacings belonging to a single joint set 
along an individual bed with a uniform thickness gen- 
erally display an appearance of normal distribution 
(Fig. 9a,c) and occasionally positively skewed fre- 
quency distribution (Fig. 9b). Similar skewed distri- 
butions have been described as gamma distributions 
(Huang and Angelier, 1989; Gross, 1993; Castaing rt 
d., 1996) or log-normal distributions (Sen and Kazi, 
1984; Narr and Suppe, 1991; Rives et al., 1992; Becker 
and Gross, 1996; Pascal ct al., 1997). Huang and 
Angelier (1989) suggest that the skewed distributions 
are due to censuring of the minute joints, which do 
not cut completely the competent layer, during 
measurements. Their suggestion is based on a fact that 
there are several different orders of spacing of joints in 
rocks in which only the larger orders are visible as 
joints (e.g. Castaing c’t al., 1996). Nan- and Suppe 
(1991) and Becker and Gross (1996) propose that such 
distributions are a direct consequence of the stress re- 
duction shadow, which inhibits formation of new 
joints in the vicinity of existing joints. Rives ct N/. 
(1992) suggest that joint set development is controlled 
by the spatial distribution of initiation points, the size 
of the interaction zones, the initiation and propagation 
criteria of the joint set, and the stage of evolution. The 
evolution from a negative exponential to a normal dis- 
tribution through a log-normal distribution corre- 
sponds to an increase in degree of fracture saturation 
with increasing extension strain. If this is true, we infer 
that the normal distribution of joint spacing, observed 
in this study, indicates a state of fracture saturation 
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for the jointed layers. Thus the relationship between strain at the stage of fracture saturation (Wu and 

joint spacing and bed thickness may provide meaning- Pollard, 1995). 

ful insights about the material properties of the rocks Figure IO(a) shows plots of median joint spacing vs 

because the spacing is not sensitive to the applied layer thickness for 42 studied sandstone layers. Each 
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Fig. 9. Histograms for joint spacing values sampled in three typical 
xlndstone layers at Plage Victor in the Saint-Jean~Port-Joli arca of 
the Quebec Appalachians. IV. number of measurements: 1, thickness 

of layer: tl. thickness of bounding non-jointed layers. 

point in Fig. 10(a) is the median spacing of 40-250 
measurements. The best-fit straight line for these data 
has a slope equal to 0.83 although there is considerable 
scatter in the data on spacing for t>20 cm. Such a 
slope is referred to as the coefficient of joint spacing. K 
(Ladeira and Price, 1981). Table 1 lists the K-values of 
sandstones reported in the literature (Price, 1966; 
Angelier rt ul., 1989; Aydan and Kawamoto. 1990; 
Narr and Suppe, 1991; Gross, 1993). These K-values 
vary from 0.60 to 1.27 with a mean value of 0.90. OUI 
measured K-value from Saint-Jean -Port-Joli is close to 
the mean value for sandstones. 

a 

0 40 80 120 160 200 

Bed Thickness (cm) 

l 

1’100 .I 

Bed Thkkness (cm) 

Fig. IO. Plots of median joint spacing (s) vs laqer thickness of sand- 
stone. measured from Plage Victor in the Saint-Jean Port-Joli area 
of the Quebec Appalachians. (a) The data are represented in a linear 
scale so that the linear relationship between joint spacing and bed 
thickness may readily be seen. (b) The data arc represented in a log- 
arithmic scale in order to obviate the problem relating to rhe unre- 

solvable data near the origin. 

In order to calculate the theoretical joint spacing in 
the layers, we need the material constants El,. E,,,, \I~,,, 

and Co in addition to the measured f and d values. In 
the present case, E,;;- and Co are the Young’s modulus 
and tensile fracture strength of sandstone, respectively. 
For the shale and mudstone, we assume that I?,,,= I6 
GPa (Gross LJT ~11.. 1995) and v,,, =0.X. For sandstone. 
El-= 58 GPa, which is obtained by averaging all the 
Young’s moduli calculated from P-wave velocities and 
densities of sandstones at 100 MPa (Christensen. 
1989). Because the joints were formed at depth in the 

Table I. Coefticient of joint spa&y (K), delinrd as the 4ope 01‘ the 
median joint spacing YS the layer thickness regression line. for hand- 

stones 

Litholog) K-\alue 
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crust, the Young’s moduli measured at room pressure 
(Hatheway and Kiersch, 1989) were not used in our 
calculations. As done by Gross et al. (1995) and 
Fischer ef ~1. (1995), we assumed that the fracture sat- 
uration strain is 5 x 10p4/s. The decay constant (n) of 
the shear stress in the matrix is taken to be 3. As 
shown in Fig. 11, a good general similarity between 
the calculated and measured relationships between .y 
and t is found using C, = 20 MPa. If the fracture satur- 
ation strain is taken to be 10-‘/s, an unrealistic Co 
value as high as 40 MPa is needed to achieve such a 
similarity. 

DISCUSSION 

There is a linear relationship between A4 and d, 
A4 = jo, where ,j is a constant. equation (25) can be 
written as 

where 

a m- 
s q 8.60 + . 0.66t, R”2 = 0.81 

160_ 

40 80 120 160 200 

Bed Thickness (cm) 

b 

(26) 

(27) 

1 ! ,.....1 . . . . ..I . ..‘.‘I ‘..-I 
.l 1 IO 100 1000 

Bed Thickness (cm) 

Fig. I I. Calculated joint spacings according to equation (25). using 
i+ 58 GPa. E,,, = 16 GPa. v,, =0.25, c = 5 x 1O-4 s&, Co=20 MPa. 
and t-d data from Fig. (13). (a) Linear scale. (b) Logarithmic scale. 
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Fig. 12. Relationship between fracture density and competent bed 
thickness for different thickness of adjacent incompetent layers in the 
Carboniferous flysch of Devon and Cornwall (U.K.). The fracture 
density is defined as the number of fractures per meter. The fracture 
density in the competent layers which adjoin incompetent layers 
thicker than 5 cm is significantly smaller (for a given thickness of 
competent layer) than when the adjacent layers are thinner than 

5 cm. After Ladeira and Price (1981) 

The constant ye depends on both material properties of 
rocks and decay modes of the shear stress in the 
bounding beds. 

Equation (26) indicates that the joint spacing 
depends not only on the jointed layer thickness (t) but 
also on the non-jointed layer thickness (d). This agrees 
qualitatively with Ladeira and Price’s (1981) field data 
collected in Carboniferous flysch exposed near Devon 
and Cornwall (U.K.). They found that the joint spa- 
cing in the competent layers which adjoin incompetent 
layers thicker than 5 cm is significantly larger (for a 
given thickness of competent layer) than when the 
adjacent layers are thinner than 5 cm (Fig. 12). Using 
finite-element techniques, Fischer et al. (1995) 
attempted to examine the effects of bounding bed 
thickness on the size of stress reduction shadow, and 
hence joint spacing. They demonstrated that the joint 
spacing first increases with increasing d/t (from 0.1 to 
0.33), but then decreases with increasing dir (from 0.33 
to 0.66). They concluded that the observed variations 
are nonsystematic and primarily due to inaccuracies in 
their numerical solution and contouring algorithm. 

Equation (26) shows that the relationship between 
joint spacing (s) and bed thickness (f) depends on the 
relationship between t and cl. If the ratio of d to t is 
constant, the relationship between s and t is linear. 
That is to say, a linear relationship occurs between s 
and t when n varies linearly with t. Hobbs (1967) 
could obtain a linear relationship between s and r 
because he assumed that the shear stress in the matrix 
extends a distance exactly equal to t in the direction 
normal to the layer from the interface (i.e. he assumes 
that cl = 2t). The well-documented linear relationship 
between s and t ( < 1.0 m) in sedimentary sequences 
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(Price, 1966: McQuillan. 1973: Ladeira and Price. 
19X I; Aydan and Kawamoto, 1990; Narr and Suppe, 
199 1) may indicate a statistically lincar relationship 
between the competent bed thickness and the incompe- 
tent layer thickness. 

In other cases. equation (26) predicts a non-linear 
increase of the joint spacing (s) with bed thickness (t). 
For example, when cl is constant or tl t is constant. 
the joint spacing increases as a function of the square 
root of the bed thickness. that is. .szfi_ Mandal r’t ~1. 
(1994) carried out a series of experiments using rigid 
layers of plaster of Paris with different thicknesses rest- 
ing on u ductile substratum of pitch with ;I constant 
thickness. They observed that the joint spacing is pro- 
portional to the square root of the bed thickness. It is 
noted that there is an important dill‘erencc between 
our theoretical model and their experimental model. In 
our model, the competent layer is confined and bonded 
on its top and bottom surfaces to the adjacent incom- 
petent layers. In the model of Mandal c’t (I/. (1994). 
however, the competent layer is bonded only to the 
incompetent substratum and has a shear-stress-free top 
surface. In both cases, the competent layer is loaded 
through shear stresses at the Iayer-matrix interface. 
Analysis of equation (8) suggests that the different 
boundary conditions of two models afTcct only the 11 
value but the relation .sz m is still valid. A doubly- 
bonded layer should have a smaller 11 value and 
accordingly a smaller joint spacing than a layer with a 
fret top surface. Therefore, the agreement between our 

theoretical prediction and the experimental results of 
Mandal c’t r/l. ( 1994) allows us to speculate that the 
non-linear relationship between .s and t documented in 
beds thicker than I .O m (Ladcira and Price. 19X 1 ). may 

be due to a fact that the thickness of incompetent 
layers in these sequences does not increase with com- 
petent bed thickness and is much less than the compc- 
tent bed thickness. 

Similarly. the transition from linear to non-linear re- 
lationships with increasing competent bed thickness. 
reported by Ladeira and Price (19X1), may bc related 
to ;I change in relationship between tl and t with 
increasing t. Therefore, the relationship between joint 
spacing and bed thickness cannot be understood with- 
out measurements of incompetent layer thickness. 
Unfortunately, no published field measurement data 
except those in the present paper arc available on the 
.Y -TV- tl relationships. We hope that our pork \\ ill encou- 
rage the systematic measurements of .s. t and tl in the 
field. 

For the sandstones at Piage Victor. Saint--Jean~Port- 

Joli. the measured / tl relationship is quite complex 
(Fig. 13). Surprisingly, such complex t tl variations 
result in ;I statistically linear relationship betwocn t 
and .Y (Fig. 1 1 a). 

Our shear-lag model deals with the distribution of 
joints in sedimentary rocks comprising alternating 
competent and incompetent beds. Apparently. the 
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model cannot be applied to massive rock units or 
igneous intrusions where joints were fhrmed by mech- 
anisms which are different from the stress transfer dis- 
cussed above. Effects of residual stresses, bending, 
cooling and unloading should play a major role in 
building up tensile stresses for formation of fractures 
in the massive rocks. 

There are also a number of assumptions in OLII 

model, the elimination of which would lead to better 
correlation between model and observation. 

Like other previous models (Price. 1966: Hobbs, 
1967; Sowers. 1972; Nan- and Suppe. 199 I; Mandnl 
ct r/l.. 1994: Fischer C/ ol.. 1995), the mechanical 
analysis is based on the assumption that there is no 
slip on the layer;matrix interfaces. Slip hetwecn the 
competent and incompetent layers will take place 
when the interfacial shear stress reaches the intet-= 
facial slip strength (z,)). As shown by equation (20) 
and Fig. 6, the interfacial shear stress varies along 
the layer length and has a maximum at the laya 
ends and :I minimum at the center of the layer. 
Thcrcfore, the slip will occur o\‘cr ;I certain Icngth 
at each end of the Iaycr. There is no interfacial slip 
for the center region of the layer. The tensile stres- 
scs for the slip and non-slip regions should be trea- 
ted separately (Ji. 1997). The intcrfacial slip 
decreases the maximum tensile stress and thus 
increases the mean joint spacing. 
It should be pointed out that the relationship 
between .joint spacing and bed thickness depends on 
the actual mode of the shear stress decay in the 
matrix. The actual mode sho~~ld bc studied by well- 
designed experiments. Moreover. the dccaq constant 
(II) in equation (14) may also Lary with the relative 
thickness of bounding layers with respect to jointed 
layer. 
It haa been assumed that the competent layer has 21 
unique tensile strength whereas in a natural sedi- 
mentary bed. ;I fairly wide distribution of strengths 
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is expected (Narr and Suppe, 1991; Rives et ul., 
1992) along the layer due to the random nature of 
defects (e.g. nodules, pebbles, pores, minerals and 
fossils). 
The principal limitation to the theory presented in 
this paper is the assumption that the two incompe- 
tent layers bounding the jointed layer are of equal 
thickness. This arises from the simple form for the 
equation of mechanical equilibrium [i.e. 
equation (S)]. This assumption is also included in 
the previous models (Price, 1966; Hobbs, 1967; 
Narr and Suppe, 1991; Gross et al., 1995; Fischer et 

al., 1995). In order to remove this limitation, a 
complex unit-cell must be used and this cannot be 
treated with the present analytic solution. 
Nevertheless the analysis, we believe, has value for 
the bedded sedimentary rocks with nearly identical 
jointed layer spacings. A rigorous elastic analysis is 
possible at present by only numerical methods, but 
it may be too tedious to employ for each actual 
layer measured in the field. 
The model is two-dimensional and implicitly 
assumes that joints are infinite in the third direc- 
tion. Thus, the interaction between joints in this 
direction is ignored. Effects of the interaction on 
the frequency distribution of joint spacing have 
been discussed in Rives rt aI. (1992) and Wu and 
Pollard ( 1995). 

The general trend of the field measurement results can 
be predicted by the model. It should be emphasized, 
however, that the prediction is based on the assump- 
tions inherent in the model and on the selection of 
material constants (EI; E,,,, LB,,,, C,,) and fracture 
saturation strain (x) for the rocks. But we believe that 
the theoretical model will be a useful aid in analyzing 
the relationship between joint spacing and bed thick- 
ness. 
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