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Abstract Hobbs' model [Hobbs, D. W, (1967) The formation of tension joints in sedimentary rocks: on ex-
planation. Geological Maguzine 104, 550-556.] has been cited as one of the theories for interpretation of the
linear relationship between saturated joint spacing (s) and bed thickness () in interbedded sedimentary rocks.
However. this model is based on an assumption that the shear stress in the bounding non-jointing layers
decreases linearly from the maximum value at the layer matrix interface to zero at a distance exactly equal to
the jointing laver thickness from the interfuce. We provide a revised analytical model which takes into account
the non-linear decay of the shear stress and the cffects of bounding bed thickness (). The model shows that
s = y/1d for the competent beds bounded by two incompetent layers nearly identical in thickness. The con-
stant 5 depends on both material properties of rocks (i.e. the Young's modulus, tensile strength and fracture
saturation strain of the competent bed. and the shear modulus of the incompetent layers) and decay modes of
the shear stress in the bounding layers. If the ratio of d to 7 is constant. the relationship between s and 7 is lin-
car. If  is constant, the joint spacing increases as a function of the square root of r. Complex ¢ d variations
from Cambrian flysch sediments at Plage Victor in the Saint-Jean Port-Joli arca of the Quebec Appalachians,

however, result in a statistically linear relationship between s and ¢ ¢

reserved

INTRODUCTION

Hobbs (1967) introduced for the first time to geologists
the shear-lag model of Cox (1952) and modified the
mathematical derivations of the model to incorporate
an elastic layer-matrix system. As described by Gross
et al. (1995), Hobbs™ paper has been commonly cited
as a theoretical explanation for the linear relationship
between joint spacing and bed thickness in sedimentary
rocks (Price. 1966; McQuillan, 1973; Ladeira and
Price, 198!: Huang and Angelier, 1989; Narr and
Suppe, 1991; Gross, 1993; Gross et al., 1995; Wu and
Pollard. 1995). However, Hobbs™ model is based on an
assumption that the shear stress in the matrix (bound-
ing non-jointing beds), which is caused by the strain
incompatibility between the competent layer and the
incompetent matrix, decreases /inearfv from the maxi-
mum value at the layer—matrix interface to zero «af «
distance exactlv equal to the jointing layver thickness
from the interface [his equation (9)]. This assumption
obliges a condition that must be met formally for
Hobbs® model to apply: the incompetent layer thick-
ness should be always larger than the jointing compe-
tent layer thickness (Narr and Suppe. 1991). In many
sedimentary rocks, however, the bounding non-jointing
beds are thin relative to jointed layer thickness (Narr
and Suppe, 1991; Gross et al., 1995). Moreover, finite-
element analyses of Fischer er al. (1995) demonstrate
that the shear stress formed by the strain incompatibil-
ity decays non-linearly in the matrix with the vertical
distance from the layer-matrix interfaces. Theoretical
analyses of the composites with an identical arrange-
ment of constituents (Zhao and Ji, 1997) suggest that
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the shear stress should decrease from the maximum
value at the layer—matrix interface to zero at half way
between two neighboring competent layers. The reason
is simple: the layer-matrix composite is considered as
an edifice constructed from the identical ‘unit-cell’
building blocks. The boundary between two neighbor-
ing unit-cells should be a plane over which no shear
stress acts because the composite is assumed to be
applied to a uniform extension.

As noted by Gross et al. (1995), it is often difficult
to understand the above problems in Hobbs™ paper
because it is compact and lacks illustrations. It is the
purpose of this paper to provide a straightforward yet
rigorous modification of the original Hobbs™ shear-lag
analysis so as to account for the non-linear decay of
shear stress in the matrix. Starting from first principles
and using equilibrium and continuity conditions, a
revised model is provided for the relationship between
joint spacing and bed thickness.

THE REVISED MODEL

Hobbs (1967) treated bedded strata as a lamellar
composite containing continuous, aligned competent
(higher elastic modulus) and incompetent (lower elastic
modulus) layers of equal length (Fig. la). He assumed
that each component behaves in a purely linear-elastic
manner, that is. no plastic yielding is allowed. Further,
in his treatment, residual stress effects are also neg-
lected. If a uniform extensional strain (&) is applied in
the direction parallel to the layers (Fig. 1b), the result-
ing tensile stress will be higher in the competent layer
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Fig. 1. Schematic illustrations of a lamellar composite containing

continuous, aligned competent (f) and incompetent (m) layers of
cqual length. (a) The unstrained state. (b) The composite is subjected
to a uniform, layer-parallel extensional strain (z). In this case, the
competent layer carried a greater stress than the incompetent laver.

than in the incompetent layers (matrix). Joints will
then form in the competent layer at its weak points
where the tensile stress has reached its critical tensile
strength (Cy). The joints terminate at contacls with
adjacent 1ncompetent layers because the competent
layer fails at much lower magnitudes of extensional
strain than the incompetent layers (Garrett and Bailey,
1977).

Because joints are free surfaces across which no
stress can be transferred (Lachenbruch, 1961; Pollard
and Segall, 1987), the far-field extensional strain can-
not be directly applied to a discontinuous, jointed
layer segment (ACDB in Fig. 2a) from its ends (AB
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Fig. 2. Schematic illustration of a unit-cell (a) used in the mechanical
equilibrium analysis of the shear-lag model for the layer- matrix sys-
tem. Variables are defined in text. The coordinate origin is located at
the center of the layer segment. The Z-axis is perpendicular to the X-
and Y-axes. Under a uniform stress. the two ends of the unit-cell will
be bent (b). As a result, a ‘lens’-shaped void will be formed between
two adjacent unit-cells (¢). (d) shows the variation of the longitudinal
displacements introduced on applying a uniform extensional strain at
the ends of the matrix. The openings at joints are exaggerated.
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and CD planes in Fig. 2a). Thus, the tensile stress
build-up in this layer segment is purely due to the
stress transfer from the matrix to the competent layer
by means of interfacial shear stresses. Because the
interfaces between the layers (AC and BD in Fig. 2a)
are assumed to be welded, the different amounts of
layer-parallel displacements between the matrix and
competent layer result in shear strains. and thus shear
stresses, parallel to the layers. It 1s of considerable
interest to know how tensile stress is built up in an in-
dividual layer segment because the final joint spacing
is controlled by the magnitude and distribution of the
stress. The stress transfer can be analyzed according to
shear-lag model (Cox, 1952; Holister and Thomas.
1966: Kelly and MacMillan, 1986; Zhao and Ji, 1997).
The following analysis does not address the problems
of joint propagation and thus we are justified in ignor-
ing the three-dimensional aspects of the phenomenon.

In order to perform the shear-lag analysis, a unit
cell 15 used. In the unit cell shown in Fig. 2(a), a
jointed competent layer segment (ACDB) lies between
two half incompetent beds (EGCA and BDHF), with
joints (AB and CD) forming the ends of the competent
layer segment. As suggested by Price (1966). a sedi-
mentary bed always contains some randomly posi-
tioned pre-existing joints which can result from a
Poisson process. The boundary conditions at the ends
of the unit cell are critical for the analysis. First, the
jointing layer is extended parallel to the X-direction
and the tensile stress in this direction should be zero
across each joint surface (AB and CD planes). Second,
the interfaces between the layers are assumed to be
welded and thus there is no interfacial slip. Third. the
external loading on the ends of the matrix (EA, BF,
GC and DH planes in Fig. 2a) cannot be uniform. If
the loading is uniform, the edges of the matrix will be
bent (Fig. 2b) during the deformation. and conse-
quently, a ‘lens’-shaped void will be formed between
two adjacent unit-cells (Fig. 2c¢). Such a scenario
implies that the joint is extended from the competent
layer into the neighboring incompetent beds a distance
equal to half thickness of the incompetent beds. In
nature, however, the joints are restricted to the compe-
tent layers (Huang and Angelier, 1989; Narr and
Suppe, 1991; Gross et al., 1995). In order to avoid the
above problem. we assume that the ends of the matrix
experience a uniform extensional strain (¢) and the
existing joints at the ends of the competent layer seg-
ment are open during the deformation (Fig. 2d). This
assumption implies that two adjacent competent layer
secgments are separated to some distance during the
extension. However, the exact size of the gaps is not
critical in this model. The model shown in Fig. 2(d) is
believed to represent sufficiently well for our purpose
the state of affairs around a jointed layer segment.

In the following analyses, we use the shear-lag
model developed by Cox (1952) and summarized by
Holister and Thomas (1966), Kelly and MacMillan
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(1986), and Zhao and Ji (1997). This model is elegant
in its simplicity and provides accurate estimates of the
longitudinal tensile stress in the continuous or discon-
tinuous fibers embedded in the weak matrix. Hence the
model has been widely used by geologists to explain
the origin of extension fracture boudinage (Lloyd et
al., 1982; Masuda and Kuriyama, 1988; Ji and Zhao,
1993; Ji et al., 1997; Ji, 1997). The model is also able
to provide the distribution of shear stresses in the
weak matrix surrounding the strong inclusions and
accordingly interpret the variations of dislocation den-
sity and of recrystallized grain size in composites and
polyphase rocks (Dunand and Mortensen, 1991; Zhao
and Ji, 1997). Furthermore, the model predicts the
elastic or flow strength of two-phase composites (e.g.
Nardone and Prewo, 1986; Zhao and Ji, 1993) and
rocks (Ji and Zhao, 1994).

Under the above conditions, as shown in detail in
the shear-lag model (Hobbs, 1967; Kelly and
MacMillan, 1986; Lloyd et al., 1982), the governing
equation for the tensile stress in the competent layer
segment, a{x), 1s given by

or(x) = Ere + i sinh(fix) + &Cosh(ﬁx) (1)
Af Ay

where ¢ is the far-field strain, E; and A4; are the
Young’s modulus and the area of cross-section of the
competent layer, respectively. Ar=bt, where ¢ and b
are the thickness and width of the competent layer in
the Y- and Z-directions (Fig. 2a), respectively.

H A\
ﬂ:(azﬁ @)

where H is a constant, depending on the geometrical
arrangement of the layer and the matrix and on their
respective elastic moduli.

In equation (1), S; and S, are constants which can
be determined according to the following boundary

conditions:
L L
o(-3)=n(3) =0 ®

where L is the length of the layer segment (Fig. 2a).
Equation (3) is due to the fact that the tensile stress is
reduced to zero at the existing joints since they are free
surfaces (Lachenbruch, 1961; Pollard and Segall,
1987).
Substituting equation (1) into equation (3), we
obtain
S =0 @)
and
EfAfS

SZ:—@. )

The distribution of tensile stress in the competent layer
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segment is then:

cosh(fx)

cosh(@—L)
where equation (6) shows that the tensile stress in a
competent layer segment builds up from the ends
(x =—0L/2 and x = L/2) and is a maximum at the
center (Fig. 3).

The value of H can be obtained from the following
analysis. If P(x) is the load in the competent layer seg-
ment at a distance x from the origin of coordinates
(Fig. 2a), Cox (1952) assumed

ﬂ;@ — HJu(x) — v(x)] (7)
X

where u(x) is the longitudinal displacement in the com-
petent layer and w(x) is the corresponding displacement
the matrix would undergo if the competent layer were
absent (Hobbs, 1967; Kelly and MacMillan, 1986;
Lloyd et al., 1982).

If 7(x, p) is the shear stress, in the x direction, on
planes parallel to the XZ plane (Fig. 2a), then at the
interface between the layer and the matrix, the shear
stress 1s t(x, #/2). According to mechanical equili-
brium,

or(x) = Epef 1 (6)

dP(x) = —21(x, t/2) - (bdx) (8)
or

dﬁff) = =2bt(x, 1/2) = Hlu(x) =v(0)] )

Therefore,

2bt(x, 1/2)

- u(x) — v(x)’ (10)

70

Ef = 58 GPa
€=0.001
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t=02m
n=3
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Fig. 3. Predicted tensile stress variations, as functions of the incom-

petent layer thickness (¢ = 0.1t, d = 1, and 4 = 5¢), along a compe-

tent layer (+ = 0.2 m and L = 20 m). Using Ey=58 GPa, E/E,, =3,
e = 0.1%, v,,=0.25, and n = 3 as input data.
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From the mechanical equilibrium point of view (Zhao
and Ji, 1997), the shear stress formed by the strain
incompatibility between the layer and the matrix
should progressively decrcase in the Y direction from
the maximum value [z(x, #/2)] at the layer/matrix inter-
face to zero at the middle way between two neighbor-
ing competent layers (EG and FH planes in Fig. 2a),
that is,

o(x, 1) = 0. when y = ! t d

(I
and

. (12)

(x, vy =t(x. £/2), when v =

rol ~

The reason for this is that the boundaries of the unit
cell (EG and FH plancs in Fig. 2a) should have zero
shear stress. Lloyd er al. (1982) assumed that shear
stress 1s constant in the X direction on any XZ plane
parallel to the layer [their equation (10)]. However.
their assumption cannot satisfy the above mechanical
equilibrium conditions (Zhao and Ji, 1997).

Hobbs (1967) proposed that the shear stress
decreases in the Y direction in the matrix according to
the following equation:

Ty p) = (X ) 0 (Z _[1)

He located the coordinate origin at the layer/matrix
interface [his equation (9)]. If we locate the coordinate
origin at the layer center (Fig. 2a). equation (13a)
becomes

(13a)

o]
-

(13b)

(X 1) = (v V)0

This assumption indicates that the shear stress in
the matnx decreases linearly from the maximum value
(.Y, ,1')\). .~ al the layer- matrix interface (o zero at a
distance exactly equal to the competent layer thickness
(¢) from the interface. Such a shear stress distribution
does not apply to the case where < r (Fig. 2a) since
the mechanical equilibrium cannot be attained. In
nature, however, many non-jointing incompetent beds
are much thinner than jointed beds. This situation is
thus precluded by Hobbs® model. The above shortcom-
ings in the Hobbs® model were also recognized by
Narr and Suppe (1991), Gross et al. (1995) and
Fischer er al. (1995).

Tyson and Davies {1965) performed a photoelastic
study of the shear stresses in a quasi-infinite matrix
{composcd of araldite CT 200) around a single cylind-
rical fiber composed of the material dural. They found
that the shear stresses in the matrix (z,,) fall off
radially approximately as the inverse of the distance
(r) from the fiber axis. Namely, t,,= t,(ry/r), where 1; is
the interfacial shear stress and ry is the fiber radius. In
the composites with large fiber volume fractions, how-
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ever, the above cquation is mappropriate to describe
the shear stress distribution in the matrix. The reason
is that the shear stress should be equal to zero at half
way between two neighboring fibers (Zhao and Ji,
1997).

In contrast to Hobbs™ assumption shown by
cquation (13a or b), two-dimensional finite element nu-
merical simulations of Fischer er «f. (1995) demon-
strated that the bedding-parallel shear stress decreases
non-linearly with increasing the vertical distance from
the maximum value at the bedding interface to zero
away {rom the interface.

A simple expression for the non-lincar variations of
(v, 1). which can satisfy the boundary conditions given
by equations (1) and (12), i1s the following:

d+zg>“

_— 14
d—1t+2v t4)

vy = T(.\'.»\')‘l.,ﬂ(
where n is a decay constant larger than or equal to |.
As shown in Fig. 4, the shear stress decrcases more
rapidly with the vertical distance [rom the interface for
larger n values. Although equation (i4) is certainly not
a4 unique solution to the boundary conditions, we
could find no constraints for values ol t(x,r) [rom
=200 = (1 d)/2 to warrant the use ol a more
complicated function for t(v, y). The actual decay
model of the shear stress in the matrix affects the re-
lationship between the joint spacing and bed thickness.
We hope that our work will encourage experimental
studies of the shear stress distribution and magnitude
in the matrix. For simplicity, in the present study, we
assume that the shear stress in the matrix can be
described by equation (14).

Now Ict w be the displacement in the soft matrix
due to the extension. If ther¢ is no slippage between
the competent and incompetent layers, w = u. At a
distance from the X-axis equal to (¢ + «)/2. we have
w = 1. Considering equation (14), we have the shear

Stress)

Shear

Stress)/(Interfacial

(Shear

0 5 10 15 20 25 30
Vertical Distance From The Interface (cm)

Fig. 4. Variations in the ratio of the matrix shear stress to the inter-

facial shear stress as a function of the vertical distance from the

layer matrix  interface. Caleulated  according  to equation  (14).
 —d - 50 cm. The quantity 7 is the decay constant.
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Fig. 5. (a) The linear variation of M-value and (b) the non-linear
variation of f-value as a function of . Calculated using ¢ = 10 cm.
v =0.25n = 3, and E/E, =3.

strain in the matrix described by the following
equation:
dw (v, ) oy, 1/2) (d+ 1 -2y (15)
- Gn  Gn \d—t+2y

where G, 1s the shear modulus of the incompetent
matrix. Integrating from /2 to (t + d)/2, thus

(/+J)/2d s Xt NM
v—u=Aw :f’/z id'y:i\_G{n_)__ (16)
where
(1+d)/2 d+1— 2y "
M = =Y dy. 17
.///3 ((1' —r+ 2}') @ {7

Equation (17) requires numerical methods for its sol-
ution. For a given n value, the M-value increases with
the thickness of incompetent layer (¢) in an approxi-
mately linear manner (Fig. 5a). The M-value is inde-
pendent of 1.

Substituting equation (16) into equation (10), we
have

(18)
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Then, substituting equation (18) into equation (2), we
obtain

2bGp \'? E?
p= (EFA{M) = [(1 + vm)tME"] (19)

where v,, is the Poisson ratio of the incompetent layer,
and Ei/E,, is the elastic contrast between the compe-
tent and the incompetent layers. For a given compe-
tent layer, fi value decreases non-linearly with
increasing the « value (Fig. 5b).

From equations (1) and (9), we can obtain the shear
stress at the layer/matrix interface (y = /2):

) _ 1dP(x)  Ardo(x) ¢ - sinh(fx)
7(.x, 1/2)‘—% c = % dr 2 El{‘/;cosh(%éy
(20)

The derivative dP(x)/dx at each position along the
layer length can be derived, in fact, from the slope of
the stress transfer profile of Fig. 3. Figure 6 shows the
variation along a layer of the shear stress at the layer—
matrix interface t(x, #/2). As expected by equation (20),
the interfacial shear stress takes up maximum values at
the ends of the jointed layer and sharply decays to
zero at a distance which is termed ‘the transfer length’
in composite mechanics (Jahankhani and Galiotis,
1991). As shown in Fig. 6, the transfer length increases
with increasing the ratio of d/t. The distribution of the
interfacial shear stress in fiber composites has been ex-
perimentally measured employing Raman spectroscopy
(Jahankhani and Galiotis, 1991) and photoelastic tech-
nique (Dow, 1961; Tyson and Davies, 1965). Their
measured stress distribution patterns are very similar
to our calculated results shown in Fig. 6.

According to equation (6), the maximum tensile
stress in the competent layer occurs midway between
two existing joints (i.e. x = 0), and is given by

1

cosh (ﬂT[)

The maximum tensile stress decreases with decreasing
the aspect ratio (L/r) of the fragmented layer and with
increasing the thickness of incompetent layers (Fig. 3).
In other words, the maximum tensile stress in the
layers increases with increasing the volume fraction of
the layers.

When the magnitude of the tensile stress (oy) trans-
ferred from the matrix reaches the tensile strength, Cj,
of the brittle layer, a new joint forms midway between
the existing joints, and tensile stress goes to zero at
this point. The joints are formed by a sequential pro-
cess (Price, 1966; Hobbs, 1967; Narr and Suppe, 1991:
Gross, 1993). After breakage, the segments are newly
loaded in the course of extension and break again.
Each segment has one maximum tensile stress along

(Gl‘)mzlx =Epg|l- (21)
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the loading direction, thus the fractured segment
should be never broken along more than one plane at
the same time if this segment is mechanically homo-
geneous. In sedimentary rocks, a number of parallel
tensile joints occur in each single competent layer.
These joints belong to different generations which were
formed by a successive jointing process.
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Equation (21) indicates that the magnitude of the
maximum tensile stress in a jointed layer segment
decreases with decreasing its length—thickness ratio
(L/1). The sequential jointing process will decrease the
aspect ratio and in consequence will reduce the maxi-
mum tensile stress in the subsegment. In other words,
layer segments which have high aspect ratios break
first. In addition, when a layer segment is jointed
during tension. its internal stress is relaxed. and the
force carried by this segment may be transferred to the
surrounding matrix and particularly neighboring
layers.

The final joint spacing (s) is thus controlled by a
critical length (with respect to the layer thickness)
below which the maximum tensile stress cannot exceed
the tensile fracture strength of the layer (C,). This sort
of development is exactly analogous to the behavior in
extension of certain types of fiber-reinforced compo-
sites (Klipeel et «al., 1990; Melanitis et al., 1992) and
rocks (Hobbs, 1967; Lloyd et al., 1982; Ji and Zhao,
1993; Ji et al., 1997). By equalizing (o). to Cy. we
obtain the critical length of the layer segment (L)
through the following equation:

2 Eﬂ:
L.=>cosh™' [ —"—).
/f cos (ENI - (};)

In fact, L. is the shortest length of layer segment
which can fracture because in shorter segments the ten-
sile stress nowhere exceeds the tensile strength of the
layer. Segments longer than L., however, will fracture
again. The minimum length of the layer segment poss-
ible should be equal to L./2 because segments shorter
than L. cannot fracture further (Lloyd er al.. 1982).
When all the layer segments finally have their lengths
between L./2 and L. joint spacing stops evolving and
remains constant with increasing strain. This is a state
of fracture saturation (Cobbold, 1979. Rives er «l.,
1992: Wu and Pollard. 1995).

At the state of fracture saturation, there 1s a range
of layer segment lengths: L./2 < L;<L.. where L; is the
length of jointed layer segments. If the frequency dis-
tribution of fracture spacing is a normal distribution
in the range from L./2 to L. we might expect the
mean fracture spacing (equivalent to the median joint
spacing in the present case). s, to be:

(22)

3
S:ZLC

(Ohsawa et al., 1978). Substituting equation (22) into
equation (23), we obtain

) cosh™ _ L
8§ = =—CO0S .
Zﬁ Eré) — C()

Then substituting equation (19) into equation (24), we
have

(23)

(24)
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[

Ee
1 f
_ 25
cosh <Ef8—C()) (25)

where E,, and v,, are the Young’s modulus and the
Poisson’s ratio of the matrix, respectively. It is worth
mentioning that Hobbs (1967) took L. as s.

Equation (25) shows that the median joint spacing
depends on the thickness of competent layer, the
mechanical properties (Ey, En, v, and Cg) of both the
competent and adjacent incompetent layers, and the
degree of tectonic deformation (¢). It depends also on
the thickness of incompetent layers (d) and the decay
constant (n) of the shear stress in the incompetent
layers because the M value in equation (25) is con-
trolled by these two factors.

It should be pointed out that the applied strain (&)
in equation (25) cannot exceed the fracture saturation
strain of the jointed layer. As shown by experiments of
Rives et al. (1992) and Wu and Pollard (1992, 1995),
when the applied strain reaches a critical value, frac-
ture spacing stops evolving and remains nearly con-
stant. The critical strain is called fracture saturation
strain. In other words, joint spacing decreases with
increasing strain before the fracture saturation strain is
reached. In contrast, a greater applied strain beyond
the fracture saturation strain will not significantly
change the joint spacing (Cobbold, 1979; Narr, 1991;
Narr and Suppe, 1991; Rives er al., 1992; Wu and
Pollard, 1992, 1995). Inputting the fracture saturation
strain into equation (25), one can obtain the relation-
ship between saturated joint spacing and bed thick-
ness.

3 E¢
s = 5 I:l(l + Um)ME—jI

m

ANALYSIS OF FIELD DATA

Field data were collected from the St-Roch
Formation of Lower Cambrian age in continuous ex-
posures at Plage Victor along the Saint-Lawrence
River near Saint-Jean-Port-Joli (Fig. 7) which is 113
km northeast of Quebec City. Rocks in this area
belong to the flysch sequence belt which forms the
western front of the Quebec Appalachians. The re-
gional geology and stratigraphy of this area were given
in Hubert (1967), St-Julien (1967), Hubert (1969) and
Shalaby (1977).

The tectonic structures of the area are characterized
by NE-SW-trending folds and reverse faults which
formed during the Appalachian compression. In the
study area (900 x 300 m?), tectonic strain is fairly
homogeneous except near the faults (Fig. 7). Joints are
confined to the hard sandstone, siltstone and limestone
layers while the soft shale and mudstone layers remain
non-jointed (Fig. 8). The joints are approximately pla-
nar fractures with little or no offset parallel to the frac-
ture plane, and thus extension fractures (‘mode I’
cracks of fracture mechanics) which formed as the
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result of extensional strain normal to the plane of frac-
ture (Pollard and Aydin, 1988). There are two sets of
joints, one strikes about 325-340° and dips between
65° and 85°, and the other trends about 140-155° and
dips 10-30°. Only the first set of joints were measured
in the field because they are nearly perpendicular to
fold axes and likely to have been formed by a regional
tectonic extension induced by the Appalachian com-
pression. The joint spacing of this set in thick beds
commonly 1s greater than in thin beds, as shown in
Fig. 8. Measurements were performed on the jointed
layers (i) having a uniform thickness; (ii) bounded by
two incompetent layers nearly identical in thickness;
(iii) not disturbed by faults; and (iv) having at least 40
parallel joints whose spacing could be measured on the
continuous outcrop. In total, 42 sandstone layers were
measured, among them 30 from area H, 5 from area J
and 7 from area K (Fig. 7). Small numbers of
measurements from areas J and K make it impossible
to investigate the effect of strain on joint spacing.

Plume structures and rib marks on joint surfaces in
uniform fine-grained siltstones and limestones indicate
that the joints initiated and propagated away from
point defects such as nodules, pebbles, pores, and min-
erals (Price, 1966; Syme-Gash, 1971; Bahat and
Engelder, 1984). It may be reasonable to assume that
such defects are randomly distributed in the rocks.

The joint-spacings belonging to a single joint set
along an individual bed with a uniform thickness gen-
erally display an appearance of normal distribution
(Fig. 9a,c) and occasionally positively skewed fre-
quency distribution (Fig. 9b). Similar skewed distri-
butions have been described as gamma distributions
(Huang and Angelier, 1989; Gross, 1993; Castaing et
al., 1996) or log-normal distributions (Sen and Kauzi,
1984; Narr and Suppe, 1991; Rives ef al., 1992; Becker
and Gross, 1996; Pascal er of., 1997). Huang and
Angelier (1989) suggest that the skewed distributions
are due to censuring of the minute joints, which do
not cut completely the competent layer, during
measurements. Their suggestion 1s based on a fact that
there are several different orders of spacing of joints in
rocks in which only the larger orders are visible as
joints (e.g. Castaing er al., 1996). Narr and Suppe
(1991) and Becker and Gross (1996) propose that such
distributions are a direct consequence of the stress re-
duction shadow, which 1inhibits formation of new
joints in the vicinity of existing joints. Rives er al.
(1992) suggest that joint set development is controlled
by the spatial distribution of initiation points, the size
of the interaction zones, the initiation and propagation
criteria of the joint set, and the stage of evolution. The
evolution from a negative exponential to a normal dis-
tribution through a log-normal distribution corre-
sponds to an increase in degree of fracture saturation
with increasing extension strain. If this is true, we infer
that the normal distribution of joint spacing, observed
in this study. indicates a state of fracture saturation
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for the jointed layers. Thus the relationship between
joint spacing and bed thickness may provide meaning-
ful insights about the material properties of the rocks
because the spacing is not sensitive to the applied

strain at the stage of fracture saturation (Wu and
Pollard, 1995).

Figure 10(a) shows plots of median joint spacing vs
layer thickness for 42 studied sandstone layers. Each
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Fig. 9. Histograms for joint spacing values sampled in three typical

sandstone layers at Plage Victor in the Saint-Jean—Port-Joli area of

the Quebec Appalachians. N, number of measurements: 1, thickness
of layer; d. thickness of bounding non-jointed layers.

point in Fig. 10(a) is the median spacing of 40-250
measurements. The best-fit straight line for these data
has a slope equal to 0.83 although there is considerable
scatter in the data on spacing for ¢>20cm. Such a
slope is referred to as the coefficient of joint spacing, K
(Ladeira and Price, 1981). Table I lists the K-values of
sandstones reported in the literature (Price, 1966;
Angelier ¢f al., 1989; Aydan and Kawamoto, 1990;
Narr and Suppe, 1991; Gross, 1993). These K-values
vary from 0.60 to 1.27 with a mean value of 0.90. Our
measured K-value from Saint-Jean-Port-Joli is close to
the mean value for sandstones.
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Fig. 10. Plots of median joint spacing (s) vs layer thickness of sand-

stone, measured from Plage Victor in the Saint-Jean -Port-Joli area

of the Quebec Appalachians. (a) The data are represented in a linear

scale so that the linear relationship between joint spacing and bed

thickness may readily be seen. (b) The data are represented in a log-

arithmic scale in order to obviate the problem relating to the unre-
solvable data near the origin.

In order to calculate the theoretical joint spacing in
the layers, we need the material constants Ep £, Vi,
and Cy in addition to the measured ¢ and « values. In
the present case, £y and C, are the Young’s modulus
and tensile fracture strength of sandstone, respectively.
For the shale and mudstone, we assume that E, =16
GPa (Gross er al., 1995) and v,,=0.25. For sandstone,
E;=58 GPa, which is obtained by averaging all the
Young’s moduli calculated from P-wave velocities and
densities of sandstones at 100 MPa (Christensen,
1989). Because the joints were formed at depth in the

Table 1. Cocthicient of joint spacing (K), defined as the slope of the

median joint spacing vs the layer thickness regression line, for sand-
stones

Lithology K-value References

Sandstone 1.27 Aydan and Kawamoto {(1990)

Sandstone 1.20 Price (1960)

Porcelanite & Siliceous 0.82 Narr and Suppe (1991)

Shale

Sandstone 0.60 Angelier er al. (1989)

Sandstone (Alegria) 0.81 Gross (1993)

Sandstone (Gaviota) 0.79 Gross (1993)

Sandstone 0.83 this study
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crust, the Young’s moduli measured at room pressure
(Hatheway and Kiersch, 1989) were not used in our
calculations. As done by Gross et al. (1995) and
Fischer et al. (1995), we assumed that the fracture sat-
uration strain is 5x 107%/s. The decay constant (#) of
the shear stress in the matrix is taken to be 3. As
shown in Fig. 11, a good general similarity between
the calculated and measured relationships between s
and ¢ is found using Cy=20 MPa. If the fracture satur-
ation strain is taken to be 107%/s, an unrealistic Cj
value as high as 40 MPa is needed to achieve such a
similarity.

DISCUSSION
There is a linear relationship between M and d,

M = jd, where j 1s a constant. equation (25) can be
written as

s=nvitd (26)
where
12
3 Ef Ef8
=2 jl + vm)—| cosh™'[——). 27
n=zI m)Em Ee - Co (27)
a 20
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= 160{
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Fig. 11. Calculated joint spacings according to equation (25), using

Er=58 GPa, E,,=16 GPa, v;=0.25, ¢ = 5x 107 s7', C;=20 MPa,
and 7—d data from Fig. (13). (a) Linear scale. (b) Logarithmic scale.
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Fig. 12. Relationship between fracture density and competent bed
thickness for different thickness of adjacent incompetent layers in the
Carboniferous flysch of Devon and Cornwall (U.K.). The fracture
density is defined as the number of fractures per meter. The fracture
density in the competent layers which adjoin incompetent layers
thicker than 5cm is significantly smaller (for a given thickness of
competent layer) than when the adjacent layers are thinner than
5cm. After Ladeira and Price (1981)

The constant n depends on both material properties of
rocks and decay modes of the shear stress in the
bounding beds.

Equation (26) indicates that the joint spacing
depends not only on the jointed layer thickness (¢) but
also on the non-jointed layer thickness (d). This agrees
qualitatively with Ladeira and Price’s (1981) field data
collected in Carboniferous flysch exposed near Devon
and Cornwall (U.K.). They found that the joint spa-
cing in the competent layers which adjoin incompetent
layers thicker than 5cm is significantly larger (for a
given thickness of competent layer) than when the
adjacent layers are thinner than 5cm (Fig. 12). Using
finite-element  techniques, Fischer er al. (1995)
attempted to examine the effects of bounding bed
thickness on the size of stress reduction shadow, and
hence joint spacing. They demonstrated that the joint
spacing first increases with increasing d/¢ (from 0.1 to
0.33), but then decreases with increasing d/r (from 0.33
to 0.66). They concluded that the observed variations
are nonsystematic and primarily due to inaccuracies in
their numerical solution and contouring algorithm.

Equation (26) shows that the relationship between
joint spacing (s) and bed thickness (1) depends on the
relationship between ¢ and d. If the ratio of d to ¢ is
constant, the relationship between s and ¢ is linear.
That is to say, a linear relationship occurs between s
and ¢ when ¢ varies linearly with 7. Hobbs (1967)
could obtain a linear relationship between s and ¢
because he assumed that the shear stress in the matrix
extends a distance exactly equal to 7 in the direction
normal to the layer from the interface (i.e. he assumes
that d = 2¢). The well-documented linear relationship
between s and ¢ (<1.0m) in sedimentary sequences
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(Price, 1966; McQuillan, 1973; Ladeira and Price,
1981; Aydan and Kawamoto, 1990; Narr and Suppe,
1991) may indicate a statistically lincar relationship
between the competent bed thickness and the incompe-
tent layer thickness.

In other cases, equation (26) predicts a non-linear
increase of the joint spacing (s) with bed thickness (7).
For example, when « is constant or d ¢ is constant,
the joint spacing increases as a function of the square
root of the bed thickness, that is. s /r. Mandal e¢r «f.
(1994) carried out a series of experiments using rigid
layers of plaster of Paris with different thicknesses rest-
ing on a ductile substratum of pitch with a constant
thickness. They observed that the joint spacing is pro-
portional to the square root of the bed thickness. It is
noted that there i1s an important difference between
our theoretical model and their experimental model. In
our model, the competent layer is confined and bonded
on its top and bottom surfaces to the adjacent incom-
petent layers. In the model of Mandal er af. (1994),
however, the competent layer is bonded only to the
incompetent substratum and has a shear-stress-{ree top
surface. In both cases, the competent layer is loaded
through shear stresses at the layer-matrix interface.
Analysis of equation (8) suggests that the different
boundary conditions of two models affect only the
value but the relation s» v/7d is still valid. A doubly-
bonded layer should have a smaller y value and
accordingly a smaller joint spacing than a layer with a
free top surface. Therefore, the agreement between our
theoretical prediction and the experimental results of
Mandal er al. (1994) allows us to speculate that the
non-linear relationship between s and 1 documented in
beds thicker than 1.0 m (Ladeira and Price, 1981), may
be due to a fact that the thickness of incompetent
layers in these sequences does not increase with com-
petent bed thickness and is much less than the compe-
tent bed thickness.

Similarly, the transition from linear to non-linear re-
lationships with increasing competent bed thickness.
reported by Ladeira and Price (1981), may be related
to a change in relationship between J and ¢ with
increasing 1. Therefore, the relationship between joint
spacing and bed thickness cannot be understood with-
out measurements of incompetent layer thickness.
Unfortunately, no published field measurement data
except those in the present paper arc available on the
s -1—d relationships. We hope that our work will encou-
rage the systematic measurements of s. 7 and « in the
field.

For the sandstones at Plage Victor. Saint-Jean—Port-
Joli. the measured ¢ d relationship is quite complex
(Fig. 13). Surprisingly, such complex ¢-d variations
result in a statistically linear relationship between ¢
and s (Fig. 11a).

Our shear-lag model deals with the distribution of
joints in sedimentary rocks comprising alternating
competent and incompetent beds. Apparently, the
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model cannot be applied to massive rock units or
igneous intrusions where joints were formed by mech-
anisms which are different from the stress transfer dis-
cussed above. Effects of residual stresses, bending,
cooling and unloading should play a major role in
building up tensile stresses for formation of fractures
in the massive rocks.

There are also a number of assumptions in our
model, the elimination of which would lcad to better
correlation between model and observation.

1. Like other previous models (Price. 1966. Hobbs,
1967; Sowers. 1972; Narr and Suppe. 1991; Mandal
et al., 1994: Fischer et al., 1995), the mechanical
analysis 1s based on the assumption that there is no
slip on the layer/matrix interfaces. Slip between the
competent and incompetent layers will take place
when the interfacial shear stress reaches the inter-
facial slip strength (z4). As shown by cquation (20)
and Fig. 6, the interfacial shear stress varies along
the layer length and has a maximum at the layer
ends and a minimum at the center of the layer.
Therefore, the slip will occur over a certain length
at each end of the layer. There is no interfacial shp
for the center region of the layer. The tensile stres-
ses for the slip and non-slip regions should be trea-
ted separately (Ji, 1997). The interfacial slip
decreases the maximum tensile and thus
increases the mean joint spacing.
It should be pointed out that the relationship
between joint spacing and bed thickness depends on
the actual mode of the shear stress decay in the
matrix. The actual mode should be studied by well-
designed experiments. Morcover, the decay constant
(/1) in equation (14) may also vary with the relative
thickness of bounding layers with respect to jointed
layer.
3. It has been assumed that the competent layer has a
unique tensile strength whereas in a natural sedi-
mentary bed, a fairly wide distribution ol strengths

Stress
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is expected (Narr and Suppe, 1991; Rives et al.,
1992) along the layer due to the random nature of
defects (e.g. nodules, pebbles, pores, minerals and
fossils).

4. The principal limitation to the theory presented in
this paper is the assumption that the two incompe-
tent layers bounding the jointed layer are of equal
thickness. This arises from the simple form for the
equation  of  mechanical  equilibrium  [i.e.
equation (8)]. This assumption is also included in
the previous models (Price, 1966; Hobbs, 1967;
Narr and Suppe, 1991; Gross et al., 1995; Fischer et
al., 1995). In order to remove this limitation, a
complex unit-cell must be used and this cannot be
treated with the present analytic solution.
Nevertheless the analysis, we believe, has value for
the bedded sedimentary rocks with nearly identical
jointed layer spacings. A rigorous elastic analysis is
possible at present by only numerical methods, but
it may be too tedious to employ for each actual
layer measured in the field.

5. The model is two-dimensional and implicitly
assumes that joints are infinite in the third direc-
tion. Thus, the interaction between joints in this
direction is ignored. Effects of the interaction on
the frequency distribution of joint spacing have
been discussed in Rives er af. (1992) and Wu and
Pollard (1995).

The general trend of the field measurement results can
be predicted by the model. It should be emphasized,
however, that the prediction i1s based on the assump-
tions inherent in the model and on the selection of
material constants (E;, E.,. vn, Cy) and fracture
saturation strain (&) for the rocks. But we believe that
the theoretical model will be a useful aid in analyzing
the relationship between joint spacing and bed thick-
ness.
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